Math Logic: Model Theory \& Computability.
Lecture 05
Example. In $\nabla_{\text {mon }}:=(1, \cdot)$, let $\underline{A}:=(\mathbb{Z}, 1, \cdot)$ and $\underline{\beta}:=(\mathbb{\mathbb { X }}, \stackrel{\text { II }}{1},!!\cdot!)$.
Then mon $t:=\left(v_{1} \cdot 1\right) \cdot v_{3}$ is a $\sigma_{\text {mon }}$-teem, and $t\left(v_{1}, v_{3}\right)$ and $t\left(v_{1}, v_{3}, v_{2}\right)$ ane both extended techs. $t^{A}\left(v_{1}, v_{3}\right): \mathbb{D}^{2} \rightarrow \mathbb{Z}$ is given by $\left(n_{1}, n_{2}\right) \mapsto\left(n_{1} \cdot 1\right) \cdot n_{2}$ while $t^{B}\left(v_{1}, v_{3}\right): \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ taking $\left(n_{1}, n_{2}\right) \mapsto\left(n_{1}+0\right)+n_{2}$.
θ_{n} the other hand, $t^{A}\left(v_{1}, v_{3}, v_{2}\right): \mathbb{Z}^{3} \rightarrow \mathbb{Z}$ given by $\left(n_{1}, n_{2}, n_{3}\right) \mapsto\left(n_{1} \cdot 1\right) \cdot n_{2}$ and $t^{B}\left(v_{1}, v_{3}, v_{2}\right): \mathbb{Z}^{3} \rightarrow \mathbb{Z}$ is given $b_{3}\left(n_{1}, n_{2}, n_{3}\right)(\mapsto)\left(n_{1}+0\right)+n_{2}$.

We call the variables present is \vec{v} bat not used in t dung vagiabbes. Note that to denote the value of the function $t^{A}\left(v_{1}, v_{3}, v_{2}\right)$ at $\left(n_{1}, n_{2}, n_{3}\right)$, we would have ho write $t^{A}\left(v_{1}, v_{3}, v_{2}\right)\left(n_{1}, n_{2}, n_{3}\right)$, which is too cumbersome, so hen hoer is no chance ot contusion, wed simply write $t^{A}\left(n_{1}, n_{2}, n_{3}\right)$.

Just like homomorphisms preserve the constants and operations, they also also preserve interpretations of terns:

Pop. Let $\mathbb{A}:=(A, \sigma)$ and $B:=(B, \sigma)$ be σ-structures and $h: \mathbb{A} \rightarrow \underline{B}$ be a hamomorplisme. Then for each extencled σ-tern $t(\vec{v})$ with $n:=|\vec{v}|$, we have hat

$$
h \circ t^{A}(\vec{v})=t^{B}\left(\vec{v}^{e}\right) \circ h,
$$

more precisely, $h\left(t^{-}(\vec{a})\right)=t^{B}(h(\vec{a}))$ for all $\vec{a} \in A^{4}$.
Prot. We prove this by induction on the length/conitenction of t.
Case 1: $t=c$, where $c \in \operatorname{Const}(\sigma)$. Then $h\left(t^{A}(\vec{a})\right)=h\left(c^{A}\right)=c^{B}=t^{B}(h(\vec{a}))$.
Case 2: $t=v_{i}$, where v_{i} is a variable. Then becase $t(\vec{v})$ is an ext. term,
this v_{i} mast appear in \vec{V}, say as the j th variable, so

$$
h\left(t^{A}(\vec{a})\right)=h\left(a_{j}\right)=(h(\vec{a}))_{j}^{\prime}=t^{-B}(h(\vec{a})) .
$$

Case 3: $t=f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in F_{\text {act }}(\sigma)$ and t_{1}, \ldots, t_{k} are σ-herman. Then because $t(\vec{v})$ is an ext herm, so are $t_{1}(\vec{v}), \ldots, t_{k}(\vec{v})$. Hence b_{y} induction, $h\left(t_{i}^{A}(\vec{a})\right)=t_{i}^{\frac{B}{i}}\left(h\left(a^{-1}\right)\right)$ for each $i \in\{1, \ldots, k\}$.
Moreover, bee h is a hon, 4 comantos with the inferpretchos. of f, so $h\left(t^{\hat{A}}(\vec{a})\right)=h\left(f^{\hat{A}}\left(t_{1}^{A}(\vec{a}), \ldots, t_{k}^{\hat{k}}(\vec{a})\right)\right)=f^{B}\left(h\left(t_{1}^{\hat{A}}(\vec{a})\right), \ldots, h\left(t_{k}^{A}(\vec{a})\right)\right)$ $=f^{\underline{B}}\left(t_{1}^{\underline{B}}(h(\vec{a})), \cdots, t_{k}^{B}\left(h\left(a^{-}\right)\right)\right)=t^{\underline{B}}(h(\vec{a}))$.

Teems ane wanes for new factions obtained by won position from wartacts and variables. We also weed names for rotations $(=$ trueffale valued factrons) obtained from the equality and relation ryubols in σ by logical wane chins and ynantitiers.

Def. A σ-formula is a word φ in the alphabet A_{σ} defined incluctively as follows:
(i) $\varphi:=t_{1}=t_{2}$, where t_{1}, t_{2} ane σ-terms.
(ii) $\varphi:=R\left(t_{1}, t_{2}, \ldots, t_{k}\right)$, shire $\left.R \in R_{l}\right|_{k}(\sigma)$ and t_{1}, \ldots, t_{k} are σ - teens.
(iii) $(\psi \vee \eta)$, where ψ, η ane σ - $f_{0}{ }^{k}$ una.
(iv) $(, \psi)$, where ψ is a σ-formula.
(v) $\left(\exists v_{i} \psi\right)$, where ψ is a σ-formula and v_{i} is a variable.

Examples. (a) $\sigma_{\text {arthur }}:=(0, S,+, \cdot)$, where S is a unary function symbol ad the other symbols are as expected. Then the following are for-

$$
\text { mulas: } S(S(0))=v_{0}, \exists v_{4}\left(\left(\left(v_{1}-v_{0}\right)+S(0)=v_{3}\right) v(S(0)=0)\right. \text {. }
$$

Also $v_{i}^{k}:=(\ldots(\underbrace{\left(v_{i}-v_{i}\right)} \ldots v_{i})$. Also, let $\psi \wedge \eta:=\neg((1, \psi) \vee(\neg \eta))$

$$
\psi \rightarrow n:=(\neg \psi) \vee n
$$

Then the following ane $\sigma_{\text {attar }}$-formulas: $\quad \forall v_{i} \psi:=\neg\left(\exists v_{i}(\neg \psi)\right)$
$0 \leqslant:=(J z(x+z=y)) \quad[$ we use other letter life x, y, z, u, v, w tor variable

- div $:=(\exists 7(x-z=y))$ with the understanding that these should all
- prime : $=(\forall x(\operatorname{div} \rightarrow((x=\dot{1}) \cup(x=y))))$ be replaced $\left.b_{y} v_{0}, v_{1}, v_{2}, \ldots\right]$

We now need to define extended σ-fora las, bat nelitee with terms, it's not as simple as just regairis the vector \vec{v} to include ale variables present in a given σ-formula be ne sone variable mag appear under quantifies. For example $\forall x(x=x)$ is a σ - formant and intuitively, it is always tine and to compute his we don't wed to give x a value from "outside". Even worse, in the formula $(\forall x(x=y)) \vee(\neg(x=z))$.
We need to define a option of a tree variable...

