Math Logic: Model Theory & Computability

Lecture 05

Example. In $\nabla_{\text{mon}} := (1, \cdot)$, let $\underline{A} := (\mathbb{Z}, 1, \cdot)$ and $\underline{B} := (\mathbb{Z}, \frac{1}{2}, \frac{1}{2})$. Then $t := (v_1 \cdot 1) \cdot v_3$ is a T_{mon} -ferm, and $t(v_1, v_3)$ and $t(v_1, v_3, v_3)$ where both extended ferms. $t^{\underline{A}}(v_1, v_3) : \mathbb{P}^2 \to \mathbb{Z}$ is given by $(n_1, n_2) \mapsto (n_1 \cdot 1) \cdot n_2$ while $t^{\underline{S}}(v_1,v_2): \mathbb{Z}^2 \rightarrow \mathbb{Z}$ taking $(n_1,n_2) \mapsto (n_1 + 0) + n_2$. On the other hand, $t^{\Delta}(v_1, v_2, v_2) \stackrel{?}{:} \mathbb{Z}^3 \rightarrow \mathbb{Z}$ given by $(n_1, n_2, n_3) \mapsto (n_1 \cdot 1) \cdot n_2$ and $t^{\Delta}(v_1, v_2, v_2) \stackrel{?}{:} \mathbb{Z}^3 \rightarrow \mathbb{Z}$ is given by $(n_1, n_2, n_3) \mapsto (n_1 \cdot 0) + n_2$.

We call the variables present is V but not used in t during vari-ables. Note that to denote the value of the function $t^{A}(v_{1},v_{3},v_{2})$ at (n, n, n, n), we would have he write $t^{A}(v_1, v_3, v_2)(n_1, n_2, n_3)$, which is how combersome, so then here is no chance of contasion, we'd simply write $t^{A}(n_1, n_2, n_3)$.

Just like homomorphisms preserve the constants and operations, they also also preserve interpretations of terms:

Prop. let $\underline{A} := (A, \nabla)$ and $\underline{B} := (B, \nabla)$)e ∇ -stractures and $\underline{h} : \underline{A} \to \underline{B}$ be a homomorphism. Then for each extended ∇ -term $t(\overline{v})$ with $n := |\overline{v}|$, we have that $h \circ \underline{t}^{\underline{A}}(\overline{v}) = \underline{t}^{\underline{B}}(\overline{v}) \circ h$, more precisely, $h(\underline{t}^{\underline{A}}(\overline{a})) = \underline{t}^{\underline{B}}(h(\overline{a}))$ for all $\overline{a} \in A^{\underline{n}}$. Proof. We prove this by induction on the length / construction of t. (ase 1: $\underline{t} = c$, where $(\underline{c} \text{ loss}(\nabla)$. Then $h(\underline{t}^{\underline{A}}(\overline{a})) = h(\underline{c}^{\underline{B}}) = \underline{t}^{\underline{B}}(h(\overline{a}))$. (ase 2: $\underline{t} = Vi$, here vi is a variable. Then because $t(\overline{v})$ is an ext. key,

this vi must appear in
$$\vec{V}$$
 say as the jth variable, so
 $h(t^{\Delta}(\vec{a})) = h(a_j) = (h(\vec{a}))_j = t^{\Delta}(h(\vec{a})).$

 $\frac{(c_{se} 3: t = f(t_{1},...,t_{k}), \text{ where } fe Fract_{k}(\sigma) \text{ and } t_{1},...,t_{k} \text{ are } \sigma \text{-herms.}}{\text{Then because } t(\vec{v}) \text{ is an } erd \text{ herm, so are } t_{1}(\vec{v}),...,t_{k}(\vec{v}). \text{ Hence } b_{1} \text{ induction, } h(t_{\overline{i}}^{A}(\vec{a})) = t_{\overline{i}}^{B}(h(\vec{a})) \text{ for } each \quad i \in \{1,...,k\}.$ $Moreover, \text{ besc } h \text{ is } a \text{ hon, } h \text{ commutes } v_{\overline{i}}h \text{ the } informetahore \\ of f, so \quad h(t^{A}(\vec{a})) = h(f^{A}(t_{\overline{i}}(\vec{a}),...,t_{a}^{A}(\vec{a}))) = f^{B}(h(t_{\overline{i}}^{A}(\vec{a})),...,h(t_{a}^{A}(\vec{a}))) \\ = f^{B}(t_{\overline{i}}^{B}(h(\vec{a})),...,t_{k}^{B}(h(\vec{a}))) = t^{B}(h(\vec{a})).$

Terms me names for new functions obtained by composition from contacts and variables. We also need names for relations (= true/false valued fractions) obtained from the equality and relation symbols in T by logical where this and granhitiers.

Det. A o-formula is a word of in the alphabet Ao defined inductively as follows: (i) q = t,=tz, where ti, tz are o-terms. (ii) $\varphi := R(t_1, t_2, ..., t_k)$, there $R \in Re[(\sigma) and t_1, ..., t_k are <math>\sigma$ -terms. (iii) ($\psi \vee \eta$), where ψ, η are σ -tormulas. (iv) (-4), where I is a o-formula. (v) (Ivit), where Y is a s-formula and vi is a veriable.

Examples. (a) Jackin:= (0, S, +, ·), where S is a whore function symbol and the other symbols are as expected. Then the following are for-malas: S(S(0)) = Vo, $\exists V_{y}[((V_{1} \cdot V_{0}) + S(0) = V_{3}) \vee (S(0) = 0)].$ (6) In the same signature Tarkan, let's abbreviate by k = S(S(....S(0)))).

Also
$$V_{i}^{U} := (... (V_{i} \cdot V_{i}) \cdot ... \cdot V_{i})$$
. Also, let $\Psi \land M := \neg (h \Psi) \lor (\neg M)$)
We seed to define a notion of a face and to compute this we don't need
 $V_{i} := \neg (h \Psi) \lor (h \Psi)$.
Also $V_{i}^{U} := \neg (h \Psi) \lor (h \Psi)$
Then the following are $\sigma_{other} - formulas$: $\forall v_{i} \Psi := \neg (h \Psi) \lor (h \Psi)$
 $0 \le := (\exists a (x + 2 = y))$ [we use ofher letter like $x_{i}y_{i}a_{i}y_{i}v_{i}v_{i}$ for variable
 $0 \quad div := (\exists a (x + 2 = y))$ [with the understanding that there also and all
 $0 \quad prime := (\forall x (div - n)(x = 1) \lor (x = y)))$] be replaced by $v_{0}, \lor_{1}, \lor_{1}, \ldots$]
We now need to define extended $\nabla - formulas, but with terms
it's not as simple as just requiring the vector ∇ to include all
 $variables$ present in a given $\nabla - formula$ here some variable may
appread under your tifiers. For example $\forall x (x = \kappa)$ is a $\nabla - formula$
 $variables, it is always true and to compute this we don't med
 $\forall x (x = y)) \lor (\neg (x = 2)).$
We need to define a motion of a free variable...$$